

i.MX8MP-COMPACT-CM

CPU Module (SoM) with NXP i.MX8M-Plus

Datasheet

rev 1.0

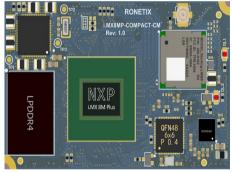


Figure 1: Top view

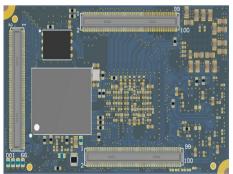


Figure 2: Bottom view

Ronetix has made every attempt to ensure that the information in this document is accurate and complete. However, Ronetix assumes no responsibility for any errors, omissions, or for any consequences resulting from the use of the information included herein or the equipment it accompanies. Ronetix reserves the right to make changes in its products and specifications at any time without notice. Any software described in this document is furnished under a license or non-disclosure agreement. It is against the law to copy this software on magnetic tape, disk, or other medium for any purpose other than the licensee's personal use. Product and company names herein may be the trademarks of their respective owners.

Ronetix Development Tools GmbH Hirschstettner Str. 19/Z110 1220 Vienna Austria <u>www.ronetix.at</u>

1. Document Revision History

Revision	Date	Notes
1.0	22-March-2021	Initial release

2. Table of Contents

Table of Contents

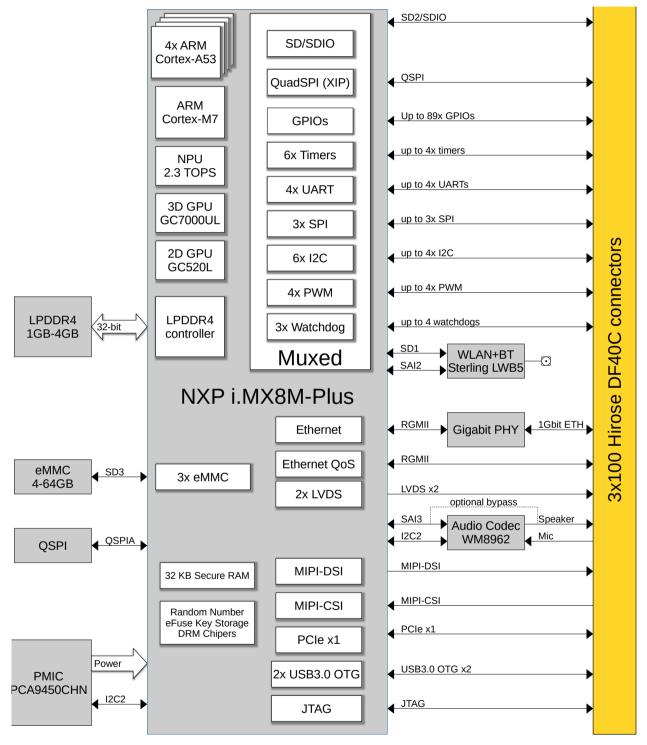
1. Document Revision History	3
2. Table of Contents	3
3. Overview	5
3.1 General Information	5
3.2 Highlights	6
3.3 SoM Block Diagram	7
4. CPU Module Hardware Components	8
4.1 Power supply	8
4.2 CPU i.MX8M-PLUS	8
4.2.1 CPU Block Diagram	9
4.2.2 CPU Platform	10
4.3 Memory	11
4.3.1 DRAM	11
4.3.2 eMMC – non-volatile storage memory	11
4.4 Gigabit Ethernet	
4.5 WLAN	12
4.6 Audio	12
4.7 LED	12
5. Hirose DF40C connectors	13
6. CPU Module interfaces	18
6.1 Display interfaces	18
6.2 MIPI-CSI Camera interface	
6.3 USB interface	21
6.4 PCI-Express	22
6.5 MMC, SD, SDIO	24
6.6 UART	26

6.7 I2C	
6.8 SPI	
6.9 PWM	28
6.10 GPIO	28
6.11 JTAG	28
7. Power Supply	29
7.1 Power supply from base board	
7.2 Power supply provided to base board	29
7.3 System Signals	
8. Electrical Specifications	
8.1 Absolute maximum ratings	
8.2 Recommended Operating Conditions	30
9. Operating Temperature Ranges	
10. Cooling	
11. Mechanical Drawings	
11.1 Base board mounting	
11.2 Standoffs	31
12. Warranty Terms	

3. Overview

3.1 General Information

The **i.MX8MP-COMPACT-CM** is a high-performance processing for low-power CPU Module (SoM – System On Module) that perfectly fits various embedded products of connected and portable devices. It is based on the NXP i.MX8M-Plus family focuses on neural processing unit (NPU) and vision system, advance multimedia, and industrial automation with high reliability. The i.MX8M-Plus is a powerful quad Arm® Cortex®-A53 processor with speed up to 1.8 GHz integrated with a NPU of 2.3 TOPS that greatly accelerate machine learning inference. The vision engine is composed of two camera inputs and a HDR-capable Image Signal Processor (ISP) capable of 375 Mpixels/s. The advanced multimedia capabilities include 1080p60 video encode and decode H.265 and H.264. A 3D and 2D graphic acceleration supporting 1 Gpixel/s, OpenVG 1.1, Open GL ES3.1, Vulkan, and Open CL 1.2 FP. Multiple audio and microphone interfaces for Immersive Audio and Voice systems. For industrial applications, real time control is enabled by an integrated 800 MHz Arm® Cortex®-M7.



3.2 Highlights

CPU	 Quad ARMv8-A, 64-bit Cortex[™]-A53 Core, 1.8GHz ARM® Cortex[™]-M7, 800MHz Neural Processing Unit 2.3 TOPS GPU GC7000UL with OpenCL and Vulkan support Video Processing Unit
Memory	 RAM: 1 GiB LPDDR4 (optional: up to 4 GiB) eMMC: 4 GiB (optional: up to 64 GiB) QSPI NOR Flash (optional)
Display	 2x LVDS HDMI MIPI DSI
Camera	• 2x MIPI-CSI, 4 data lanes
Network	 Ethernet: 10/100/1000Mbps WiFi: Sterling LWB5, 802.11ac, dual band (optional) Bluetooth: Bluetooth 4.2 (optional)
I/O	 PCIe 2.0, 1-lane 2x USB3.0 OTG port Up to 4x UART ports MMC/SD/SDIO Up to 3x SPI Up to 4x I2C Up to 4x general purpose PWM signals GPIOs
Electrical	• Supply Voltage: 3.85 – 5.0V
Physical	 Board size: 50x30mm Operation temperature: 0° +70°C, -20° to 85° C (optional) Relative humidity: 10% to 90%

3.3 SoM Block Diagram

4. CPU Module Hardware Components

This chapter describes the hardware components of i.MX8MP-COMPACT-CM SoM.

4.1 Power supply

i.MX8MP-COMPACT-CM uses NXP's PCA9450CHN as a Power Management Integrated circuit (PMIC) designed specifically for use with NXP's i.MX8M series of application processors. The PMIC regulates all power rails required on CPU module from a single 3.85V-5.0V power supply.

The PMIC is fully programmable via the I2C interface and associated register map. Additional communication is provided by direct logic interfacing including interrupt, watchdog and reset.

4.2 CPU i.MX8M-PLUS

The i.MX8M-Plus Quad processors represent NXP's latest market of connected streaming audio/video devices, scanning/imaging devices, and various devices requiring high-performance, low-power processors. The i.MX8M-Plus Quad processors feature advanced implementation of a quad Arm®Cortex®-A53 core, which operates at speeds of up to 1.8 GHz integrated with a NPU of 2.3 TOPS that greatly accelerate machine learning inference. A general purpose Cortex®-M7 core processor is for low-power processing. The DRAM controller supports 32-bit/16-bit LPDDR4, DDR4, and DDR3Lmemory. There are a number of other interfaces for connecting peripherals, such as WLAN, Bluetooth, GPS, displays, and camera sensors.

4.2.1 CPU Block Diagram

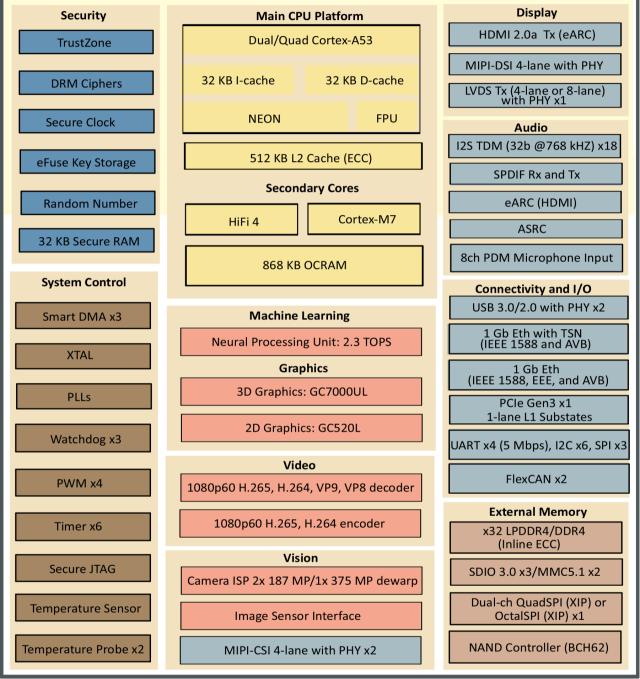


Figure 4.1: i.MX8M-Plus block diagram

4.2.2 CPU Platform

The i.MX8M-Plus processor implements up to four ARM® Cortex®-A53 cores intended for high level O/S, with an ARM® Cortex®-M7 core dedicated for real-time tasks and integrated NPU with 2.3 TOPS.

The ARM Cortex-A53 MPCore[™] platform has the following features:

- Quad ARM Cortex-A53 Cores
- Target frequency of 1.8GHz
- The core configuration is symmetric, where each core includes:
 - 32 KByte L1 Instruction Cache
 - 32 KByte L1 Data Cache
 - MPE (media processing engine) with NEON co-processor supporting SIMD architecture
- The Arm Cortex-A53 Core complex shares:
 - General interrupt controller (GIC) with 128 interrupt support
 - Global timer
 - Snoop control unit (SCU)
 - 1 MB unified I/D L2 cache
 - NEON MPE co-processor
 - SIMD Media Processing Architecture
 - NEON register file with 32x64-bit general-purpose registers
 - NEON Integer execute pipeline (ALU, Shift, MAC)
 - NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
 - NEON load/store and permute pipeline

The ARM Cortex-M7 platform includes the following features:

- Cortex-M4 CPU core operating at 800 MHz
- MPU (memory protection unit)
- FPU (floating-point unit)

- 32 KByte instruction cache
- 32 KByte data cache
- 256 KByte TCM (tightly-coupled memory)

4.3 Memory

4.3.1 DRAM

i.MX8MP-COMPACT-CM is standard equipped with 1 GB LPDDR4 memory. Optionally up to 4 GB can be assembled. The data bus is 32-bit wide.

4.3.2 eMMC – non-volatile storage memory

i.MX8MP-COMPACT-CM is standard equipped with 4 GB eMMC. Optionally up to 32 GB can be assembled.

The eMMC can be used as boot device.

4.4 Gigabit Ethernet

i.MX8MP-COMPACT-CM implements one full-featured 10/100/1000 Ethernet ports implemented with MAC built into the i.MX8M-Plus SoC, coupled with AR8031 RGMII Ethernet PHYs from Qualcomm. The Ethernet interface support the following main features:

- 10/100/1000 BASE-T IEEE 802.3 compliant.
- IEEE 802.3u compliant Auto-Negotiation.
- Supports all IEEE 1588 frames inside the MAC.
- Automatic channel swap (ACS).
- Automatic MDI/MDIX crossover.
- Automatic polarity correction.
- Activity and speed indicator LED controls.

The i.MX8M-Plus SoC implements a second Gigabit Ethernet QoS Controller with TNS support. An external PHY is required to complete the interface to the media. The Ethernet QoS signals are available on the Hirose DF40C connectors.

4.5 WLAN

i.MX8MP-COMPACT-CM optional wireless communication is implemented with Laird Sterling LWB5 WLAN module. Sterling-LWB5 is an 802.11ac/b/g/n Dual-Band Wi-Fi+Bluetooth module based on Cypress's BCM43353 chipset. It is Dual-Band AC on 2.4GHz + 5GHz and incorporates Bluetooth 4.2. The download speed are 300Mbps on N networks and 867Mbps on AC network.

i.MX8MP-COMPACT-CM is equipped with a U.FL high frequency connector for external antenna.

4.6 Audio

i.MX8MP-COMPACT-CM implements an audio codec WM8962 (assembled optional) . The WM8962 is a low power stereo codec featuring Class D speaker drivers to provide 2W per channel into 4 Ω loads. External component requirements are drastically reduced as no separate microphone, speaker or headphone amplifiers are required. Advanced on-chip digital signal processing performs automatic level control for the microphone or line input. Stereo 24-bit Delta Sigma converters are used with low power over-sampling digital interpolation and decimation filters and a flexible digital audio interface. The main clock can be input directly or generated internally by an onboard PLL, supporting most commonly used clocking schemes.

The WM8962 supports the following features:

- Stereo class D speaker driver, 2W per channel
- On-chip headphone driver 30mW output power into 16Ω
- Microphone interface
- Pop and click suppression
- DAC SNR 98 dB ('A' weighted), THD -84 dB at 48 kHz, 3.3V
- ADC SNR 94 dB ('A' weighted), THD -85 dB at 48 kHz, 3.3V
- Programmable ALC / limiter and noise gate

Please refer to the WM8960 datasheet for additional details.

4.7 LED

The i.MX8MP-COMPACT-CM features a red LED controlled by GPIO3_IO14 signal of the i.MX8M-Plus. The LED is ON when GPIO3_IO14 is logic High.

5. Hirose DF40C connectors

The i.MX8MM-COMPACT-CM exposes three 100 pin Hirose connectors DF40C-100DP-0.4V(51).

Recommended mating connector for custom board interfacing with stacking height 1.5mm is DF40C-100DS-0.4V(51). With an appropriated mated connector stacking heights from 1.5mm up to 4mm are possible.

J1	Signal iMX8MP	i.MX8MP Ball	Default	Alt-0	Alt-1	Alt-2	Alt-3	Alt-4	Alt-5
1	GPIO2_IO07	AA29	gpio2.IO[7]	usdhc1.DATA5					gpio2.IO[7]
3	JTAG_TDI								
5	JTAG_TDO								
7	JTAG TCK								
9	JTAG TMS								
11	BOOT MODE2								
13	BOOT_MODE1								
15	BOOT_MODE0								
17	GND								
19	SD2 nRST	AD28	gpio2.IO[19]	usdhc2.RESET_B					gpio2.IO[19]
21	SD2_nCD	AD29	gpio2.IO[12]	usdhc2.CD_B					gpio2.IO[12]
23	SD2_WP	AC26	gpio2.IO[20]	usdhc2.WP					gpio2.IO[20]
25	SD2 DATA2	AA26	gpio2.IO[17]	usdhc2.DATA2		ECSPI2 SS0	SPDIF1 OUT	PDM BIT2	gpio2.IO[17]
27	SD2 DATA3	AA25	gpio2.IO[18]	usdhc2.DATA3		ECSPI2 MISO	SPDIF1 IN	PDM BIT3	gpio2.IO[18]
29	SD2 CLK	AB29	gpio2.IO[13]	usdhc2.CLK		ECSPI2 SCLK	UART4_RX	-	gpio2.IO[13]
31	SD2_CMD	AB28	gpio2.IO[14]	usdhc2.CMD		ECSPI2_MOSI	UART4 TX	PDM_CLK	gpio2.IO[14]
33	SD2 DATA1	AC29	gpio2.IO[16]	usdhc2.DATA1		I2C4 SCL	UART2 TX	PDM BIT1	gpio2.IO[16]
35	SD2 DATA0	AC28	gpio2.IO[15]	usdhc2.DATA0		I2C4 SDA	UART2 RX	PDM BITO	gpio2.IO[15]
37	GPIO2_IO11	W26	gpio2.IO[11]	usdhc1.STROBE		_	_	_	gpio2.IO[11]
39	GPIO4 IO22	AH16	gpio4.IO[22]	sai2.RX BCLK	sai5.TX BCLK		SAI2 TXD1	uart1.RX	gpio4.IO[22]
41	SAI5_RXFS	AC14	gpio3.IO[19]	sai5.RX SYNC	sai1.TX_DATA[0]		12C6 SCL		gpio3.IO[19]
43	SAI5 RXD0	AE16	gpio3.IO[21]	sai5.RX DATA[0]	sai1.TX_DATA[2]	PWM2_OUT	I2C5 SCL	PDM BITO	gpio3.IO[21]
45	SAI5_MCLK	AF14	gpio3.IO[25]	sai5.MCLK	sai1.TX_BCLK	PWM1_OUT	I2C5_SDA		gpio3.IO[25]
47	SAI5_RXC	AD14	gpio4.IO[1]	sai1.RX_BCLK	sai5.RX_BCLK		PDM_CLK		gpio4.IO[1]
49	SAI5 RXD1	AD16	gpio4.IO[3]		sai5.RX DATA[1]		PDM_BIT1		gpio4.IO[3]
51	SAI5 RXD3	AE14	gpio4.IO[5]	sai1.RX DATA[3]	sai5.RX DATA[3]		PDM BIT3		gpio4.IO[5]
53	SAI5 RXD2	AF16	gpio4.IO[4]	sai1.RX_DATA[2]			PDM_BIT2		gpio4.IO[4]
55	REF_CLK_32K	A7	gpio1.IO[0]	gpio1.IO[0]					REF_CLK_32K
57	GPI01 1001	E8	gpio1.IO[1]	gpio1.IO[1]	PWM1 OUT				REF CLK 24M
59	GPI01 1006	A3	gpio1.IO[6]	gpio1.IO[6]	enet1.MDC				usdhc1.CD B
61	GPI01 1007	F6	gpio1.IO[7]	gpio1.IO[7]	enet1.MDIO				usdhc1.WP
63	GND		SI(-)	51					
65	GPIO1 IO08	A8	gpio1.IO[8]	gpio1.IO[8]	enet1.1588 EVENT0 IN	PWM1 OUT			usdhc2.RESET B
67	SAI2 RXFS	AH17	gpio4.IO[21]	sai2.RX SYNC	sai5.TX SYNC		sai2.RX_DATA[1]	uart1.TX	gpio4.IO[21]
69	ENET_LED_LINK100								5,
71	ENET LED LINK1000								
73	ENET LED ACT								
75	CLKIN1	L24	gpio3.IO[8]	rawnand.DATA02	gspi.A DATA[2]	usdhc3.CD B			gpio3.IO[8]
77	CLKIN2	L25	gpio3.IO[7]	rawnand.DATA01					gpio3.IO[7]
79	GND		Sh						5,
81	CLKOUT1	K28							
83	CLKOUT2	L28							
85	GND								
87	SPDIF RX	AD18	gpio5.IO[4]	spdif1.IN	pwm2.OUT				gpio5.IO[4]
89	SPDIF TX	AE18	gpio5.IO[3]	spdif1.OUT	pwm3.OUT				gpio5.IO[3]
91	SPDIF_EXT_CLK	AC18	gpio5.IO[5]	spdif1.EXT_CLK	pwm1.OUT				gpio5.IO[5]
93	GPIO1_IO12	A5	gpio1.IO[12]	gpio1.IO[12]	usb1.OTG_PWR				sdma2.EXT_EVENT[1]
95	GPI01 I014	A4	gpio1.IO[12]	gpio1.IO[14]	usb2.OTG_PWR			usdhc3.CD B	pwm3.OUT
	GPI01 I013	A6	gpio1.IO[13]	gpio1.IO[13]	usb1.OTG OC				pwm2.OUT
97			30.01.0[20]	191.91.10[10]					

Figure 5.1: J1, odd pins

J1	Signal iMX8MP	i.MX8MP Ball	Default	Alt-0	Alt-1	Alt-2	Alt-3	Alt-4	Alt-5
2	ENET_TX1_P								
4	ENET TX1 N								
6	ENET_RX1_P								
8	ENET_RX1_N								
10	ENET TX2 P								
12	ENET_TX2_N								
14	ENET RX2 P								
16	ENET_RX2_N								
18	GND								
20	SAI1 TXD6	AC12	gpio4.IO[18]	sai1.TX DATA[6]	sai6.RX SYNC	sai6.TX SYNC		ENET1 RX ER	gpio4.IO[18]
22	SAI1_TXD7	AJ13	gpio4.IO[19]	sai1.TX DATA[7]	sai6.MCLK		pdm.CLK	ENET1 TX ER	gpio4.IO[19]
24	SAI1 TXD4	AH13	gpio4.IO[16]	sai1.TX DATA[4]	sai6.RX BCLK	sai6.TX BCLK		ENET1 RGMII TX CTL	gpio4.IO[16]
26	SAI1_TXD5	AH14	gpio4.IO[17]	sai1.TX_DATA[5]	sai6.RX_DATA[0]	sai6.TX_DATA[0]		ENET1_RGMII_TXC	gpio4.IO[17]
28	SAI1 TXD2	AH11	gpio4.IO[14]	sai1.TX DATA[2]	sai5.TX_DATA[2]	Salotri _ Sitti (oj		ENET1 RGMII TD2	gpio4.IO[14]
30	SAI1_TXD3	AD12	gpio4.IO[14]	sai1.TX DATA[3]	sai5.TX DATA[3]			ENET1 RGMII TD3	gpio4.IO[15]
32	SAI1 TXD1	AJ10	gpio4.IO[13]	sai1.TX DATA[1]	sai5.TX DATA[1]			ENET1 RGMII TD1	gpio4.IO[13]
34	SAIL TXD0	AJ11	gpio4.IO[13]	sai1.TX_DATA[1]	sai5.TX DATA[0]			ENET1 RGMII TD0	gpio4.IO[12]
36	SAI1_TXD6	AH10	gpio4.IO[12]	sai1.RX DATA[6]	sai6.TX_SYNC	sai6.RX_SYNC		ENET1 RGMII RD2	gpio4.IO[12]
38	SAI1_RXD7	AH12	gpio4.IO[9]	sai1.RX_DATA[7]	sai6.MCLK	sai1.TX_SYNC	sai1.TX_DATA[4]	ENET1_RGMII_RD3	gpio4.IO[9]
40	SAI1_RXD4	AD10			sai6.TX_BCLK	sai6.RX_BCLK	Sali.TA_DATA[4]	ENET1_RGMII_RD0	
			gpio4.IO[6]	sai1.RX_DATA[4]			anit DX SYNC		gpio4.IO[6]
42	SAI1_RXD5	AE10	gpio4.IO[7]	sai1.RX_DATA[5]	sai6.TX_DATA[0]	sai6.RX_DATA[0]		ENET1_RGMIL_RD1	gpio4.IO[7]
44	SAI1_RXD2	AH9	gpio4.IO[4]	sai1.RX_DATA[2]	sai5.RX_DATA[2]		PDM_BIT2	ENET1_MDC	gpio4.IO[4]
46	SAI1_RXD3	AJ8	gpio4.IO[5]	sai1.RX_DATA[3]	sai5.RX_DATA[3]		PDM_BIT3	ENET1_MDIO	gpio4.IO[5]
48	SAI1_RXFS	AJ9	gpio4.IO[0]	sai1.RX_SYNC	sai5.RX_SYNC				gpio4.IO[0]
50	SAI1_RXD0	AC10	gpio4.IO[2]	sai1.RX_DATA[0]	sai5.RX_DATA[0]	sai1.TX_DATA[1]	PDM_BIT0		gpio4.IO[2]
52	SAI1_RXD1	AF10	gpio4.IO[3]	sai1.RX_DATA[1]	sai5.RX_DATA[1]		PDM_BIT1		gpio4.IO[3]
54	SAI1_RXC	AH8	gpio4.IO[1]	sai1.RX_BCLK	sai5.RX_BCLK				gpio4.IO[1]
56	SAI1_TXFS	AF12	gpio4.IO[10]	sai1.TX_SYNC	sai5.TX_SYNC			ENET1_RGMII_RX_CTL	gpio4.IO[10]
58	SAI1_MCLK	AE12	gpio4.IO[20]	sai5.MCLK	SAI5_MCLK	SAI1_TXC			gpio4.IO[20]
60	SAI1_TXC	AJ12	gpio4.IO[11]	sai1.TX_BCLK	sai5.TX_BCLK			ENET1_RGMII_RXC	gpio4.IO[11]
62	GND								
64	GPIO1_IO05	B4	gpio1.IO[5]	gpio1.IO[5]	m7.NMI				PMIC_READY
66	GPIO1_IO09	B8	gpio1.IO[9]	gpio1.IO[9]	enet1.1588_EVENT0_C			usdhc3.RESET_B	sdma2.EXT_EVENT[0
68	UART1_RXD	AD6	gpio5.IO[22]	uart1.RX	ecspi3.SCLK				gpio5.IO[22]
70	UART1_TXD	AJ3	gpio5.IO[23]	uart1.TX	ecspi3.MOSI				gpio5.IO[23]
72	UART2_RXD	AF6	gpio5.IO[24]	uart2.RX	ecspi3.MISO				gpio5.IO[24]
74	UART2_TXD	AH4	gpio5.IO[25]	uart2.TX	ecspi3.SS0				gpio5.IO[25]
76	UART1_CTS	AE6	gpio5.IO[26]	uart3.RX	uart1.CTS_B	usdhc3.RESET_E			gpio5.IO[26]
78	UART1_RTS	AJ4	gpio5.IO[27]	uart3.TX	uart1.RTS_B	usdhc3.VSELECT			gpio5.IO[27]
80	UART4_RXD	AJ5	gpio5.IO[28]	uart4.RX	uart2.CTS_B	pcie1.CLKREQ_B			gpio5.IO[28]
82	UART4_TXD	AH5	gpio5.IO[29]	uart4.TX	uart2.RTS_B				gpio5.IO[29]
84	I2C4_SDA	AD8	gpio5.IO[21]	i2c4.SDA	pwm1.OUT				gpio5.IO[21]
86	I2C4_SCL	AF8	gpio5.IO[20]	i2c4.SCL	pwm2.OUT	pcie1.CLKREQ_B			gpio5.IO[20]
88	GND								
90	SAI3_RXFS	AJ19	gpio4.IO[28]	sai3.RX_SYNC	gpt1.CAPTURE1	sai5.RX_SYNC	sai3.RX_DATA[1]	SPDIF1_IN	gpio4.IO[28]
92	SAI3_RXD	AF18	gpio4.IO[30]	sai3.RX_DATA[0]	gpt1.COMPARE1	sai5.RX_DATA[0]		uart2.RTS_B	gpio4.IO[30]
94	SAI3_TXC	AH19	gpio5.IO[0]	sai3.TX_BCLK	gpt1.COMPARE2	sai5.RX_DATA[2]		uart2.TX	gpio5.IO[0]
96	SAI3_TXD	AH18	gpio5.IO[1]	sai3.TX_DATA[0]	gpt1.COMPARE3	sai5.RX_DATA[3]			gpio5.IO[1]
98	SAI3_MCLK	AJ20	gpio5.IO[2]	sai3.MCLK	pwm4.OUT	sai5.MCLK			gpio5.IO[2]
100	SAI3 TXFS	AC16	gpio4.IO[31]	sai3.TX_SYNC	gpt1.CLK		sai3.TX_DATA[1]	uart2.RX	gpio4.IO[31]

Figure 5.2: J1, even pins

1 3 5 7 9 11 13 15	Signal iMX8MP USB2_VBUS	i.MX8MP Ball		Alt-0	Alt-1	Alt-2	Alt-3	Alt-4	Alt-5
3 5 7 9 11 13 15	USB2_VBUS	D12							
5 7 9 11 13 15	USB2_VBUS								
7 9 11 13 15		DIL							
9 11 13 15	UCD4 VDUC								
11 13 15	USB1_VBUS	A11							
13 15	GND								
15	LVDS0_CLK_N	G28							
	LVDS0_CLK_P	F29							
17 1	GND								
	LVDS0_TX3_N	J28							
	LVDS0_TX3_P	H29							
	GND								
	LVDS0_TX2_N	H28							
	LVDS0_TX2_P	G29							
	GND								
	LVDS0_TX1_N	F28							
	LVDS0_TX1_P	E29							
33	GND								
35	LVDS0_TX0_N	E28							
37	LVDS0_TX0_P	D29							
39	GND								
41	MX8_ONOFF	G22							
43	I2C1_SCL	AC8	gpio5.IO[14]	i2c1.SCL	enet1.MDC				gpio5.IO[14]
45	I2C1_SDA	AH7	gpio5.IO[15]	i2c1.SDA	enet1.MDIO				gpio5.IO[15]
47	POR_B	J29							
49	I2C3_SCL	AJ7	gpio5.IO[18]	i2c3.SCL	pwm4.OUT	gpt2.CLK			gpio5.IO[18]
51	I2C3_SDA	AJ6	gpio5.IO[19]	i2c3.SDA	pwm3.OUT	gpt3.CLK			gpio5.IO[19]
53	ECSPI2_MISO	AH20	gpio5.IO[12]	ecspi2.MISO	uart4.CTS_B				gpio5.IO[12]
	ECSPI2_MOSI	AJ21	gpio5.IO[11]	ecspi2.MOSI	uart4.TX				gpio5.IO[11]
57	ECSPI1_MISO	AD20	gpio5.IO[8]	ecspi1.MISO	uart3.CTS_B				gpio5.IO[8]
	ECSPI1_MOSI	AC20	gpio5.IO[7]	ecspi1.MOSI	uart3.TX				gpio5.IO[7]
	ECSPI1 SS0	AE20	gpio5.IO[9]	ecspi1.SS0	uart3.RTS B				gpio5.IO[9]
	ECSPI2 SS0	AJ22	gpio5.IO[13]	ecspi2.SS0	uart4.RTS B				gpio5.IO[13]
	VDD_1V8				_				
	VDD_1V8								
	VDD 1V8								
	VDD_3V3								
	VDD_3V3								
	VDD_3V3								
	VSYS								
	VSYS								
	VSYS								
	VSYS								
	VSYS								
	VSYS								
	GND								
	GND								
	GND								
	GND								
	GND								
	GND								

Figure 5.3: J2, odd pins

J2	Signal iMX8MP	i.MX8MP Ball		Alt-0	Alt-1	Alt-2	Alt-3	Alt-4	Alt-5
				AII-0	All-1	Alt-2	Alt-5	Alt-4	Alt-5
2	USB2_D_P	D14							
4	USB2_D_N	E14							
6	USB1_D_P	D10							
8	USB1_D_N	E10							
10	GND								
12	PCIE_REF_CLK_P	D16							
14	PCIE_REF_CLK_N	E16							
16	GND								
18	PCIE_TX_P	A15							
20	PCIE_TX_N	B15							
22	GND								
24	PCIE_RX_P	A14							
26	PCIE_RX_N	B14							
28	GND								
30	CSI1_D3_P	D26							
32	CSI1_D3_N	E26							
34	GND								
36	CSI1_D2_P	D24							
38	CSI1_D2_N	E24							
40	GND								
42	CSI1_CLK_P	D22							
44	CSI1_CLK_N	E22							
46	GND								
48	CSI1_D1_P	D20							
50	CSI1_D1_N	E20							
52	GND								
54	CSI1_D0_P	D18							
56	CSI1_D0_N	E18							
58	GND								
60	SYS_nRST	PMIC							
62	ECSPI1_SCLK	AF20	gpio5.IO[6]	ecspi1.SCLK	uart3.RX				gpio5.IO[6]
64	ECSPI2_SCLK	AH21	gpio5.IO[10]		uart4.RX				gpio5.IO[10]
66	VDD_1V8								
68	VDD_1V8								
70	VDD_1V8								
72	VDD_3V3								
74	VDD_3V3								
76	VDD_3V3								
78	VSYS								
80	VSYS								
82	VSYS								
84	VSYS								
86	VSYS								
88	VSYS								
90	GND								
92	GND								
92	GND								
96	GND								
98	GND								
100	GND								
100	GND								

Figure 5.4: J2, even pins

J3	Signal iMX8MP	i.MX8MP Ball	Alt-0	Alt-1	Alt-2	Alt-3	Alt-4	Alt-5
1	DSI D0 P	A16						
3	DSI D0 N	B16						
5	GND							
7	DSI_D1_P	A17						
9	DSI D1 N	B17						
11	GND	511						
13	DSI CLK P	A18						
15	DSI_CLK_N	B18						
17	GND	010						
19	DSI_D2_P	A19						
21	DSI_D2_N	B19						
23	GND	513				-		
25	DSI_D3_P	A20						
27	DSI_D3_N	B20						
29	GND	620						
31	LVDS1_TX0_P	A26						
31								
33	LVDS1_TX0_N GND	B26						
35	LVDS1 TX1 P	A27						
39	LVDS1_TX1_N	B27						
41	GND	100			-			
43	LVDS1_CLK_P	A28						
45	LVDS1_CLK_N	B28						
47	GND							
49	LVDS1_TX2_P	B29						
51	LVDS1_TX2_N	C28						
53	GND							
55	LVDS1_TX3_P	C29						
57	LVDS1_TX3_N	D28						
59	GND							
61	SAI3_RXC	AJ19						gpio4.IO[29]
63	HDMI_DDC_SDA	AF22						
65	HDMI_DDC_SCL	AC22						
67	HDMI_CEC	AD22						
69	HDMI_HPD	AE22						
71	BT_REG_ON	U26			_			gpio2.IO[6]
73	WL_REG_ON	W25	SD1_RESET_B	ENET1_TX_CLK_IN		I2C3_SCL	UART3_RTS_B	gpio2.IO[10]
75	GPIO2_IO09	U25						
77	GPIO2_IO08	AA28						
79	SAI2_TXFS	AJ17		SAI5_TXD1		SAI2_TXD1	UART1_CTS_B	gpio4.IO[24]
81	SAI2_TXD	AH16		SAI5_TXD3		FLEXCAN2_TX		gpio4.IO[26]
83	SAI2_RXD	AF18		SAI5_TXD0		SAI2_TXD1	UART1_RTS_B	gpio4.IO[23]
85	SAI2_TXC	AH15		SAI5_TXD2		FLEXCAN1_RX		gpio4.IO[25]
87	SAI2_MCLK	AJ15		SAI5_MCLK		FLEXCAN2_RX		gpio4.IO[27]
89	GND							
91	I2C2_SCL	AH6			SD3_CD_B	ECSPI1_MISO		gpio5.IO[16]
93	I2C2_SDA	AE8			SD3_WP	ECSPI1_SS0		gpio5.IO[17]
95	DMIC_CLK	WM8962B						
97	VSD_3V3							
99	VSD_3V3							

Figure 5.5: J2, odd pins

J3	Signal iMX8MP	i.MX8MP Ball	Alt-0	Alt-1	Alt-2	Alt-3	Alt-4	Alt-5
2	CSI2 D3 P		Alteo	AILT	All-2	All-S	7.11-4	All-3
4		A21 B21						
	CSI2_D3_N	B21						
6	GND	100						
8	CSI2_D2_P	A22						
10	CSI2_D2_N	B22						
12	GND							
14	CSI2_CLK_P	A23						
16	CSI2_CLK_N	B23						
18	GND							
20	CSI2_D1_P	A24						
22	CSI2_D1_N	B24						
24	GND							
26	CSI2_D0_P	A25						
28	CSI2_D0_N	B25						
30	GND							
32	USB2_TX_P	A13	 					
34	USB2_TX_N	B13						
36	GND							
38	USB2_RX_P	A12						
40	USB2_RX_N	B12						
42	GND							
44	USB1_TX_P	A10						
46	USB1_TX_N	B10						
48	GND							
50	USB1_RX_P	A9						
52	USB1_RX_N	B9						
54	GND							
56	HDMI_EARC_P	AJ23						
58	HDMI_EARC_N	AH22						
60	GND							
62	HDMI_TX2_P	AH27						
64	HDMI_TX2_N	AJ27						
66	GND							
68	HDMI_TX1_P	AH26						
70	HDMI_TX1_N	AJ26						
72	GND							
74	HDMI_TX0_P	AH25						
76	HDMI_TX0_N	AJ25						
78	GND	, .020						
80	HDMI_CLK_P	AH24						
82	HDMI_CLK_N	AJ24						
84	GND	MJ24						
86	MIC	WM8962B						
	DMIC_DAT	WM8962B						
88								
90	HEADPHONE_L	WM8962B						
92	HEADPHONE_R	WM8962B						
94	SPK_RN	WM8962B						
96	SPK_RP	WM8962B						
98	SPK_LN	WM8962B						
100	SPK_LP	WM8962B	1	1		1	1	1

Figure 5.6: J3, even pins

6. CPU Module interfaces

6.1 Display interfaces

i.MX8MP-COMPACT-CM provides the following display interfaces:

• MIPI DSI

The MIPI-DSI interface is based on the four-lane MIPI display interface available with the iMX8M-Plus SoC. The DSI signals are available on the HIROSE DF40C connectors.

The following main features are supported:

- Up to 4 data lanes support D-PHY
- Implements all three DSI Layers (Pixel to Byte packing, Low Level Protocol, Lane Management)
- Maximum resolution ranges up to FHD (1920 x 1440 @ 60 Hz)
- Supports High Speed and Low Power operation
- MIPI Alliance Specification for Display Serial Interface Version 1.1 compliant

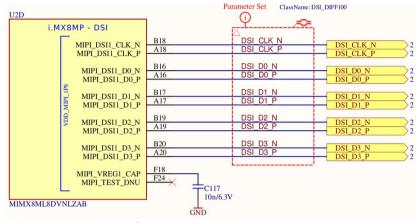


Figure 6.1: MIPI-DSI

- The i.MX8M-Plus SoC implements a LVDS Display Bridge used to connect the LCDIF to External LVDS Display Interface. LDB supports two channels, each channel has following signals:
 - One clock pair
 - Four data pairs
 - Each signal pair contains LVDS special differential pad (PadP, PadM).

Both LVDS channels are available on the Hirose DF40C connectors.

2G			assName: LVDS_DIFF100 arameter Set	
i.MX8M	1P - LVDS		9 🗢	
_		500		
	LVDS0_D0_N	E28 D29	LVDS0_TX0_N LVDS0_TX0_P	LVDS0_TX0_N
	LVDS0_D0_P	D29	LVDSU_IAU_P	LVDS0_TX0_P
	LVDS0 D1 N	F28	LVDS0 TX1 N	LVDS0 TX1 N
	LVDS0_D1_N LVDS0_D1_P	E29	LVDS0_TX1_P	LVDS0_TX1_N LVDS0_TX1_P
	LVD30_D1_1			LVD30_IAI_I
	LVDS0 D2 N	H28	LVDS0_TX2_N	LVDS0 TX2 N
	LVDS0_D2_P	G29	LVDS0_TX2_P	LVDS0_TX2_P
		J28	LVDS0 TX3 N	
	LVDS0_D3_N	H29	LVDS0_TX3_N	LVDS0_TX3_N
	LVDS0_D3_P	112/	EVD00_IA5_I	LVDS0_TX3_P
	LVDS0_CLK_N	G28	LVDS0_CLK_N	LVDS0 CLK N
a.	LVDS0_CLK_N LVDS0_CLK_P	F29	LVDS0_CLK_P	LVDS0_CLK_N
S	LVD00_CER_I			LVD30_CLK_I
841_20V1_00V				
B				
>				
		B26	LVDS1_TX0_N	
	LVDS1_D0_N	A26	LVDS1 TX0 P	LVDS1_TX0_N
	LVDS1_D0_P			LVDS1_TX0_P
	LVDS1 D1 N	B27	LVDS1_TX1_N	LVDS1 TX1 N
	LVDS1_D1_N	A27	LVDS1_TX1_P	LVDS1_IX1_R
	2.201_01_1			
	LVDS1_D2_N	C28 B29	LVDS1_TX2_N LVDS1_TX2_P	LVDS1_TX2_N
	LVDS1_D2_P	B29	LVDSI_IA2_P	LVDS1_TX2_P
		D28	LVDS1_TX3_N	LVDS1 TX3 N
	LVDS1_D3_N	C29	LVDS1 TX3 P	LVDS1_TX3_N
	LVDS1_D3_P	02)		LVDS1_TX3_P
	LVDS1 CLK N	B28	LVDS1_CLK_N	LVDS1 CLK N
	LVDS1_CLK_N LVDS1_CLK_P	A28	LVDS1_CLK_P	LVDS1_CLK_N LVDS1_CLK_P
L	LVD31_CLK_F			LYDSI_CLK_F

Figure 6.2: LVDS Interface

6.2 MIPI-CSI Camera interface

i.MX8MP-COMPACT-CM MIPI-CSI interface is derived from the four-lane MIPI-CSI host controller (MIPI_CSI) integrated into the iMX8M-Plus SoC. The CSI2 host controller is a digital core that implements all protocol functions defined in the MIPI CSI-2 specification, providing an interface between i.MX8MP-COMPACT-CM and a MIPI CSI-2 compliant camera sensor. The following main features are supported:

- Support primary and secondary Image format
 - YUV420, YUV420 (Legacy), YUV420 (CSPS), YUV422 of 8-bits and 10-bits
 - RGB565, RGB666, RGB888
 - RAW6, RAW7, RAW8, RAW10, RAW12, RAW14
- Support up to 4 lanes of D-PHY
- Interfaces
 - Compatible to PPI (Protocol-to-PHY Interface) in MIPI D-PHY Specification

- AMBA3.0 APB Slave for Register configuration.
- Image output data buswidth : 32 bits
- Supports data interleave
- Image memory
 - Size of SRAM is 4KB
- Pixel clock can be gated when no ppi data is coming.

U2E	Parameter Set
i.MX8MP - CSI] 0 🗢
MIPI CSI1 CLK N	
MIPI_CSII_CLK_P	D22 CSI1_CLK_P CSI1_CLK_P 2
MIPI CSI1 D0 N	E18 CSI1_D0_N CSI1_D0_N 2
MIPI_CSI1_D0_P	D18 CSI1_D0_P CSI1_D0_P 2
MIPI_CSI1_D1_N	E20 CSI1_D1_N CSI1_D1_N 2 D20 CSI1_D1_P CSI1_D1_N 2
MIPI_CSI1_D1_P	CSII_DI_P 2
MIPI_CSI1_D2_N	E24 CSI1_D2_N CSI1_D2_N 2 D24 CSI1_D2_P CSI1_D2_P 2
MIPI_CSI1_D2_P	
MIPI_CSI1_D3_N MIPI_CSI1_D3_P	E20 CSII_D3 N CSII_D3 N 2 D26 CSII_D3 P CSII_D3 P 2
MIPI_CSI1_D3_N MIPI_CSI1_D3_P	
QQ	B23 CSI2 CLK N
MIPI_CSI2_CLK_N MIPI_CSI2_CLK_P	A23 CSI2_CLK_P CSI2_CLK_P 2
MIPI_CSI2_D0_N MIPI_CSI2_D0_P	A25 CSI2_D0_P 2 CSI2_D0_P 2
MIPI CSI2 D1 N	B24 CSI2_D1_N CSI2_D1_N 2
MIPI_CSI2_D1_P	A24 CSI2_D1_P CSI2_D1_P 2
MIPI_CSI2_D2_N	B22 CSI2 D2 N CSI2 D2 N 2 A22 CSI2 D2 P CSI2 D2 P 2
MIPI_CSI2_D2_P	CSI2_D2_P 2
MIPI_CSI2_D3_N MIPI_CSI2_D3_P	B21 CSI2 D3 N CSI2 D3 N 2 A21 CSI2 D3 P CSI2 D3 P 2
MIPI_CSI2_D3_P	
<u> </u>	

MIMX8ML8DVNLZAB Figure 6.3: MIPI-CSI

6.3 USB interface

The i.MX8M-Plus SoC is equipped with two USB OTG controllers and PHYs. Each USB instance contains a USB 3.0 core. Both ports support dual-role functionality. The USB ports support the following main features:

- Complies with USB specification rev 3.0 (xHCI compatible)
- Supports operation as a standalone USB host controller
- USB dual-role operation and can be configured as host or device
- Super-speed (5 Gbit/s), high-speed (480 Mbit/s), full-speed (12 Mbit/s), and low speed (1.5 Mbit/s) operations.
- Supports operation as a standalone single port USB

- Supports four programmable, bidirectional USB endpoints
- Supports system memory interface with 40-bit addressing capability

U2B		Name: USB_DIFF90 meter Set		
i.MX8MP - USB	1 di di	(i)		
USB1_VBUS USB1_D_N USB1_D_P USB1_DNU	Voltage Range:0-3.3V A11 USB1 VBUS R R33 30k/1% E10 D10 B11	USB1_D_N USB1_D_P	USB1_VBUS USB1_D_N USB1_D_P	2 2 2 2
USB1_TX_P USB1_TX_N USB1_RX_P © USB1_RX_N	A10 B10 A9 B9	USB1_TX_P USB1_TX_N USB1_RX_P USB1_RX_N	USB1_TX_P USB1_TX_N USB1_RX_P USB1_RX_N	$\frac{2}{2}$
USB1_KX_N USB1_TXRTUNE	F10 R34 200R/1% GND			
USB2_VBUS USB2_D_N USB2_D_P USB2_DNU	Voltage Range:0-33V E14 E14 E14 E12 X	USB2_D_N USB2_D_P	USB2_VBUS USB2_D_N USB2_D_P	2 2 2 2
USB2_TX_P USB2_TX_N USB2_RX_P	A13 B13 A12 B12	USB2_TX_P USB2_TX_N USB2_RX_P USB2_RX_N	USB2_TX_P USB2_TX_N USB2_RX_P	2^{2}_{2}
USB2_RX_N USB2_TXRTUNE	F12 R36 200R/1% GND		USB2_RX_N	>2
MIMX8ML8DVNLZAB				

Figure 6.4: USB

6.4 PCI-Express

The i.MX8M-Plus SoC is equipped with one single lane PCI Express port (PCIe) Revision 4.0, Version 0.7. The PCI Express ports support the following main features:

- Supports Root Complex (RC) and Endpoint (EP) configurations
- Maximum link speed up to Gen3 (8 GT/s)
- x1 link width
- 128-byte maximum payload size (MAX_PAYLOAD_SIZE)
- 32- and 64-bit PCI Express address support
- Supports accesses to all PCI Express memory and I/O address spaces (RC mode requestor only)
- Supports posting of processor-to-PCI Express and PCI Express-to-memory writes
- Embedded DMA

- AXI3 bridge
- Credit-based flow control management handled by PCI Express core
- One Virtual Channel (VC0)
- PCI Express configuration space registers with Type 0 Header in EP mode and Type 1 Header in RC mode
- Internal Address Translation Unit
- Resizable BAR (RBAR) with Expanded RBAR support
- Configurable BAR Filtering, I/O Filtering, Configuration Filtering and Completion Lookup/Timeout
- Supports Completion Timeout Ranges
- Extended Tag Support
- Supports strong and relaxed transaction ordering rules
- Configurable Filtering Rules for Posted, Non-posted, and Completion Traffic
- ECRC Generation and Checking
- Baseline and Advanced Error Reporting (AER) support
- PCI Express Advanced Error Reporting (AER) with Multiple Header Logging
- Supports PCI Express messages and interrupts
- Supports 64-bit MSI interrupts
- Internal MSI-X Generation Module
- MSI and MSI-X with Per-Vector Masking (PVM), Extended message data for MSI
- Latency Tolerance Reporting (LTR)
- ID-Based Ordering (IDO)
- PASID
- L1 Substates (L1SS)
- Separate Refclk with Independent Spread Spectrum Clocking (SRIS)
- Lightweight Notifications (LN)
- Readiness Notifications (RN)
- PCI Express Active State Power Management (ASPM)

- Vital Product Data (VPD)
- Power Gating (UPF) Support
- Advanced Power and Clock Management

The PCIe controller implementation is compatible with the following standards:

- PCI Express Base Specification, Revision 4.0, Version 0.7
- PCI Local Bus Specification, Revision 3.0
- PCI Bus Power Management Specification, Revision 1.2
- PCI Express Card Electromechanical Specification, Revision 1.1

On i.MX8MP-COMPACT-CM SoM PCIe is connected to the Hirose DF40C connector and requires an external 100MHz PCIe compliant reference clock.

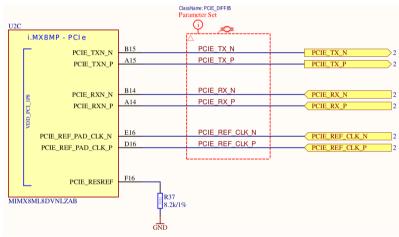


Figure 6.5: PCIe

6.5 MMC, SD, SDIO

The i.MX8M-Plus SoC is equipped with three MMC/SD/SDIO controller IPs (uSDHC). On i.MX8MP-COMPACT-CM SD3 is connected to the eMMC, SD1 is connected to the WiFi module, SD2 is available on the Hirose DF40C connector.

The uSDHC supports the following main features:

• Fully compliant with MMC command/response sets and physical layer as defined in the multimedia card system specification, v5.1/v5.0/v4.4/v4.41/v4.4/v4.3/v4.2.

- Fully compliant with SD command/response sets and physical layer as defined in the SD memory card specifications, v3.0 including high-capacity SDXC cards up to 2 TB.
- Card bus clock frequency up to 208 MHz
- Supports 1-bit/4-bit SD and SDIO modes, and 1-bit/4-bit/8-bit MMC modes
 - Up to 832 Mbps of data transfer for SDIO cards using four parallel data lines in the Single Data Rate (SDR) mode
 - Up to 400 Mbps of data transfer for SDIO card using four parallel data lines in the Dual Data Rate (DDR) mode
 - Up to 832 Mbps of data transfer for SDXC cards using four parallel data lines in the Single Data Rate (SDR) mode
 - Up to 400 Mbps of data transfer for SDXC card using four parallel data lines in the Dual Data Rate (DDR) mode
 - Up to 1600 Mbps of data transfer for MMC cards using eight parallel data lines in the Single Data Rate (SDR) mode
 - Up to 3200 Mbps of data transfer for MMC cards using eight parallel data lines in the Dual Data Rate (DDR) mode
- Supports single block/multi-block read and write
- Supports block sizes of 1 ~ 4096 bytes
- Supports the write protection switch for write operations
- Supports both synchronous and asynchronous abort
- Supports pause during the data transfer at block gap
- Supports SDIO Read Wait and Suspend Resume operations
- Supports Auto CMD12 for multi-block transfer
- Host can initiate non-data transfer command while data transfer is in progress
- Allows cards to interrupt the host in 1-bit and 4-bit SDIO modes; also supports interrupt period
- Embodies two fully configurable 256x32-bit FIFO for read/write data
- Supports internal and external DMA capabilities
- Support voltage selection by configuring vendor-specific register bit
- Supports Advanced DMA to perform linked memory access

• support Command queue mechanism

6.6 UART

The i.MX8MP-COMPACT-CM exposes up to 4 UART interfaces some of which are multiplexed with other peripherals.

The i.MX8M-Plus UART supports the following features:

- High-speed TIA/EIA-232-F compatible
- 9-bit or Multidrop mode (RS-485) support
- 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none).
- Programmable baud rates up to 4 Mbps.
- 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud.
- Serial IR interface low-speed, IrDA-compatible (up to 115.2 Kbit/s).
- Hardware flow control support for request to send and clear to send signals.
- RS-485 driver direction control.
- DCE/DTE capability.
- RX_DATA input and TX_DATA output can be inverted respectively in RS-232/RS-485 mode.
- Various asynchronous wake mechanisms with capability to wake the processor from STOP mode through an on-chip interrupt.

6.7 I2C

The i.MX8M-Plus SoC is equipped with four I2C bus interfaces. I2C1, I2C2, I2C3 and I2C4 are available on the Hirose DF40C connector. I2C2 is used internally and it is also available on Hirose DF40C. The following general features are supported by all I2C bus interfaces:

- Compliant with I2C specification
- Multimaster operation
- Software programmability for one of 64 different serial clock frequencies
- Software-selectable acknowledge bit
- Interrupt-driven, byte-by-byte data transfer

- Arbitration-lost interrupt with automatic mode switching from master to slave ٠
- Calling address identification interrupt ٠
- Start and stop signal generation/detection
- Repeated Start signal generation
- Acknowledge bit generation/detection
- **Bus-busy** detection

I2C usage table:

NAME	PERIPHERAL	ADDRESS	
2C1 - 1.8V	i.M X8M M -COM PACT-M B: Camera on CSI 1, 3.3V $\!$	(0x3C<<1)+RW	
	i.M X8M M -COM PACT-M B: U SB3.0 Power Switch, 3.3V*	(0x050<<1)+RW	
	i.M X8M M -COM PACT-M B: RTC clock, 3.3V*	(0x51<<1)+RW	
	i.M X8M M - COM PACT-M B: miniPCIEe Ref. Clock, 3.3V*	(0x6A<<1)+RW	
	i.M X8M M -COM PACT-M B: Audio Codec, 3.3V*	(0x1A<<1)+RW	
12C2	i.M X8M P - C O M P A C T - C M : P M I C control	(0x25<<1)+RW	
1.8V	i.M X8M P - C O M P A C T - C M : A udio C odec	(0x1A<<1)+RW	
12C 3	i.M X 8M M -C O M P A C T - M B : P C I e M .2, 3.3V*		
1.8V	i.M X 8M M - C O M P A C T - M B : C amera on C SI 2, 3.3V*	(0x3C<<1)+RW	

Note: 3.3V* - through voltage translator

Figure 6.6: I2C address usage

6.8 SPI

Up-to three SPI interfaces are accessible through the i.MX8MP-COMPACT-CM base board interface. The SPI interfaces are derived from i.MX8M-Plus integrated synchronous serial interface (eCSPI). Each instance of eCSPI port can operate as either a master or as an SPI slave. The following features are supported:

- Data rate up to 52 Mbit/s. ٠
- Full-duplex synchronous serial interface. ٠
- Master/Slave configurable. ٠
- Up-to four chip select signals to support multiple peripherals. ٠

- Transfer continuation function allows unlimited length data transfers.
- 32-bit wide by 64-entry FIFO for both transmit and receive data.
- Polarity and phase of the Chip Select (SS) and SPI Clock (SCLK) are configurable.
- Direct Memory Access (DMA) support.

6.9 PWM

Up to four PWM output signals are available at the i.MX8MP-COMPACT-CM base board interface. The following key features are supported:

- 16-bit up-counter with clock source selection
- 4 x 16 FIFO to minimize interrupt overhead
- 12-bit prescaler for division of clock
- Sound and melody generation
- Active high or active low configured output
- Interrupts at compare and rollover

6.10 GPIO

Up-to 96 of the i.MX8M-Plus general purpose input/output (GPIO) signals are available on the Hirose DF40C connector. When configured as an output, it is possible to write to an i.MX8M-Plus register to control the state driven on the output pin. When configured as an input, it is possible to detect the state of the input by reading the state of an i.MX8M-Plus register. In addition GPIOs peripheral can produce interrupts.

6.11 JTAG

The System JTAG Controller (SJC) provides debug and test control with maximum security. The test access port (TAP) is designed to support features compatible with the IEEE standard 1149.1 v2001 (JTAG). Support IEEE P1149.6 extensions to the JTAG standard are for AC testing of selected IO signals. The JTAG signals are available on the Hirose DF40C connector.

7. Power Supply

7.1 Power supply from base board

i.MX8MP-COMPACT-CM is powered by regulated DC supply 3.85-5.0V

Signal	Туре	Description
VIN_4V2	Power input	Main Power Supply 3.85-5.0V
GND	Power input	Common ground

7.2 Power supply provided to base board

i.MX8MP-COMPACT-CM provides 1.8V and 3.3V power supplies to the Hirose DF40C connector.

Signal	Туре	Description
VDD_1V8	Power output	1.8V, Max. 0.5A
VDD_3V3	Power output	3.3V, Max. 1.5A

7.3 System Signals

Signal	Туре	Description
MX8_ONOFF	Input with Pull-Up resistor	ON/OFF button input (De-bouncing provided at this input). Short connection to GND in OFF mode causes internal power management state machine to change state to ON. In ON mode short connection to GND generates interrupt (intended to SW controllable power down). Long above ~5s connection to GND causes "forced" OFF.
SYS_nRST	Input	PMIC Power On signal

8. Electrical Specifications

8.1 Absolute maximum ratings

Parameter	MIn	Max	Unit
VIN_4V2 – Main Power Supply		5.25	V
USB_VBUS - USB_HOST_VBUS, USB_OTG_VBUS	-0.3	5.25	V

8.2 Recommended Operating Conditions

Parameter	MIn	Тур	Max	Unit
VIN_4V2 – Main Power Supply	3.8	4.2	5.0	V
VIN_4V2 – recommended source capability		4.0		А

9. Operating Temperature Ranges

Range	Temp.	
Commercial	0° to +70°C	
Industrial	-40° to +85°C	

10. Cooling

A cooling solution should be provided to ensure that under worst-case conditions the temperature on any spot of the heat-spreader surface is maintained according to the iMX8MM-COMPACT-CM temperature specifications.

11. Mechanical Drawings

All dimensions are in millimeters.

The height of all parts is < 2mm.

The base board connector provides 1.5mm board to board clearance.

Board thickness is 1.0mm

11.1 Base board mounting

i.MX8MP-COMPACT-CM SoM has two mounting quarter-holes for mounting to the base board which are plated and connected to GND.

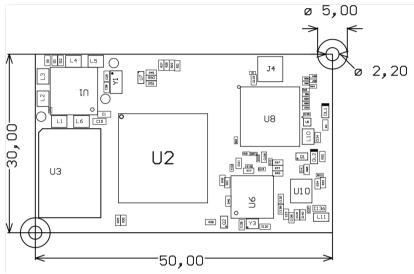


Figure 11.1: Assembly drawing

11.2 Standoffs

Fix i.MX8MP-COMACT-CM to the base board by mounting two spacers with suitable screws. The spacers should be:

• M2x0.4, length 1.5mm

12. Warranty Terms

Ronetix guarantees hardware products against defects in workmanship and material for a period of one (1) year from the date of shipment. Your sole remedy and Ronetix's sole liability shall be for Ronetix, at its sole discretion, to either repair or replace the defective hardware product at no charge or to refund the purchase price. Shipment costs in both directions are the responsibility of the customer. This warranty is void if the hardware product has been altered or damaged by accident, misuse or abuse.

Disclaimer of Warranty

THIS WARRANTY IS MADE IN LIEU OF ANY OTHER WARRANTY, WHETHER EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF ANY

JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

Limitation on Liability

UNDER NO CIRCUMSTANCES SHALL RONETIX BE LIABLE FOR ANY LOSS, DAMAGE OR EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT. IN NO EVENT SHALL RONETIX BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY PRODUCT. BY ORDERING THE CPU MODULE, THE CUSTOMER APPROVES THAT THE RONETIX CPU MODULE, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS MET THE CUSTOMER'S REQUIREMENTS AND SPECIFICATIONS.